direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C23.23D14, C24.70D14, (C23×C4)⋊4D7, (C23×C28)⋊4C2, (C22×C4)⋊43D14, D14⋊C4⋊41C22, (C2×C14).287C24, (C2×C28).704C23, Dic7⋊C4⋊44C22, (C22×C28)⋊56C22, C14.133(C22×D4), (C22×C14).205D4, C23.91(C7⋊D4), C23.D7⋊55C22, C22.82(C4○D28), C14⋊4(C22.D4), (C23×D7).74C22, C22.302(C23×D7), C23.233(C22×D7), (C23×C14).109C22, (C22×C14).416C23, (C2×Dic7).149C23, (C22×D7).125C23, (C22×Dic7).161C22, (C2×D14⋊C4)⋊13C2, C14.62(C2×C4○D4), C2.70(C2×C4○D28), C2.6(C22×C7⋊D4), C7⋊5(C2×C22.D4), (C2×Dic7⋊C4)⋊18C2, (C2×C14).574(C2×D4), (C2×C23.D7)⋊22C2, (C2×C4).657(C22×D7), (C22×C7⋊D4).13C2, C22.103(C2×C7⋊D4), (C2×C14).113(C4○D4), (C2×C7⋊D4).136C22, SmallGroup(448,1242)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C23.23D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=d, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce13 >
Subgroups: 1412 in 342 conjugacy classes, 127 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, D7, C14, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, Dic7, C28, D14, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C2×C4⋊C4, C22.D4, C23×C4, C22×D4, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C22×C14, C22×C14, C2×C22.D4, Dic7⋊C4, D14⋊C4, C23.D7, C22×Dic7, C22×Dic7, C2×C7⋊D4, C2×C7⋊D4, C22×C28, C22×C28, C23×D7, C23×C14, C2×Dic7⋊C4, C2×D14⋊C4, C23.23D14, C2×C23.D7, C22×C7⋊D4, C23×C28, C2×C23.23D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C22.D4, C22×D4, C2×C4○D4, C7⋊D4, C22×D7, C2×C22.D4, C4○D28, C2×C7⋊D4, C23×D7, C23.23D14, C2×C4○D28, C22×C7⋊D4, C2×C23.23D14
(1 187)(2 188)(3 189)(4 190)(5 191)(6 192)(7 193)(8 194)(9 195)(10 196)(11 169)(12 170)(13 171)(14 172)(15 173)(16 174)(17 175)(18 176)(19 177)(20 178)(21 179)(22 180)(23 181)(24 182)(25 183)(26 184)(27 185)(28 186)(29 132)(30 133)(31 134)(32 135)(33 136)(34 137)(35 138)(36 139)(37 140)(38 113)(39 114)(40 115)(41 116)(42 117)(43 118)(44 119)(45 120)(46 121)(47 122)(48 123)(49 124)(50 125)(51 126)(52 127)(53 128)(54 129)(55 130)(56 131)(57 165)(58 166)(59 167)(60 168)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)(81 161)(82 162)(83 163)(84 164)(85 197)(86 198)(87 199)(88 200)(89 201)(90 202)(91 203)(92 204)(93 205)(94 206)(95 207)(96 208)(97 209)(98 210)(99 211)(100 212)(101 213)(102 214)(103 215)(104 216)(105 217)(106 218)(107 219)(108 220)(109 221)(110 222)(111 223)(112 224)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 29)(18 30)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)(25 37)(26 38)(27 39)(28 40)(57 222)(58 223)(59 224)(60 197)(61 198)(62 199)(63 200)(64 201)(65 202)(66 203)(67 204)(68 205)(69 206)(70 207)(71 208)(72 209)(73 210)(74 211)(75 212)(76 213)(77 214)(78 215)(79 216)(80 217)(81 218)(82 219)(83 220)(84 221)(85 168)(86 141)(87 142)(88 143)(89 144)(90 145)(91 146)(92 147)(93 148)(94 149)(95 150)(96 151)(97 152)(98 153)(99 154)(100 155)(101 156)(102 157)(103 158)(104 159)(105 160)(106 161)(107 162)(108 163)(109 164)(110 165)(111 166)(112 167)(113 184)(114 185)(115 186)(116 187)(117 188)(118 189)(119 190)(120 191)(121 192)(122 193)(123 194)(124 195)(125 196)(126 169)(127 170)(128 171)(129 172)(130 173)(131 174)(132 175)(133 176)(134 177)(135 178)(136 179)(137 180)(138 181)(139 182)(140 183)
(1 116)(2 117)(3 118)(4 119)(5 120)(6 121)(7 122)(8 123)(9 124)(10 125)(11 126)(12 127)(13 128)(14 129)(15 130)(16 131)(17 132)(18 133)(19 134)(20 135)(21 136)(22 137)(23 138)(24 139)(25 140)(26 113)(27 114)(28 115)(29 175)(30 176)(31 177)(32 178)(33 179)(34 180)(35 181)(36 182)(37 183)(38 184)(39 185)(40 186)(41 187)(42 188)(43 189)(44 190)(45 191)(46 192)(47 193)(48 194)(49 195)(50 196)(51 169)(52 170)(53 171)(54 172)(55 173)(56 174)(57 96)(58 97)(59 98)(60 99)(61 100)(62 101)(63 102)(64 103)(65 104)(66 105)(67 106)(68 107)(69 108)(70 109)(71 110)(72 111)(73 112)(74 85)(75 86)(76 87)(77 88)(78 89)(79 90)(80 91)(81 92)(82 93)(83 94)(84 95)(141 212)(142 213)(143 214)(144 215)(145 216)(146 217)(147 218)(148 219)(149 220)(150 221)(151 222)(152 223)(153 224)(154 197)(155 198)(156 199)(157 200)(158 201)(159 202)(160 203)(161 204)(162 205)(163 206)(164 207)(165 208)(166 209)(167 210)(168 211)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 90 130 65)(2 64 131 89)(3 88 132 63)(4 62 133 87)(5 86 134 61)(6 60 135 85)(7 112 136 59)(8 58 137 111)(9 110 138 57)(10 84 139 109)(11 108 140 83)(12 82 113 107)(13 106 114 81)(14 80 115 105)(15 104 116 79)(16 78 117 103)(17 102 118 77)(18 76 119 101)(19 100 120 75)(20 74 121 99)(21 98 122 73)(22 72 123 97)(23 96 124 71)(24 70 125 95)(25 94 126 69)(26 68 127 93)(27 92 128 67)(28 66 129 91)(29 143 189 200)(30 199 190 142)(31 141 191 198)(32 197 192 168)(33 167 193 224)(34 223 194 166)(35 165 195 222)(36 221 196 164)(37 163 169 220)(38 219 170 162)(39 161 171 218)(40 217 172 160)(41 159 173 216)(42 215 174 158)(43 157 175 214)(44 213 176 156)(45 155 177 212)(46 211 178 154)(47 153 179 210)(48 209 180 152)(49 151 181 208)(50 207 182 150)(51 149 183 206)(52 205 184 148)(53 147 185 204)(54 203 186 146)(55 145 187 202)(56 201 188 144)
G:=sub<Sym(224)| (1,187)(2,188)(3,189)(4,190)(5,191)(6,192)(7,193)(8,194)(9,195)(10,196)(11,169)(12,170)(13,171)(14,172)(15,173)(16,174)(17,175)(18,176)(19,177)(20,178)(21,179)(22,180)(23,181)(24,182)(25,183)(26,184)(27,185)(28,186)(29,132)(30,133)(31,134)(32,135)(33,136)(34,137)(35,138)(36,139)(37,140)(38,113)(39,114)(40,115)(41,116)(42,117)(43,118)(44,119)(45,120)(46,121)(47,122)(48,123)(49,124)(50,125)(51,126)(52,127)(53,128)(54,129)(55,130)(56,131)(57,165)(58,166)(59,167)(60,168)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,161)(82,162)(83,163)(84,164)(85,197)(86,198)(87,199)(88,200)(89,201)(90,202)(91,203)(92,204)(93,205)(94,206)(95,207)(96,208)(97,209)(98,210)(99,211)(100,212)(101,213)(102,214)(103,215)(104,216)(105,217)(106,218)(107,219)(108,220)(109,221)(110,222)(111,223)(112,224), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,29)(18,30)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(57,222)(58,223)(59,224)(60,197)(61,198)(62,199)(63,200)(64,201)(65,202)(66,203)(67,204)(68,205)(69,206)(70,207)(71,208)(72,209)(73,210)(74,211)(75,212)(76,213)(77,214)(78,215)(79,216)(80,217)(81,218)(82,219)(83,220)(84,221)(85,168)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155)(101,156)(102,157)(103,158)(104,159)(105,160)(106,161)(107,162)(108,163)(109,164)(110,165)(111,166)(112,167)(113,184)(114,185)(115,186)(116,187)(117,188)(118,189)(119,190)(120,191)(121,192)(122,193)(123,194)(124,195)(125,196)(126,169)(127,170)(128,171)(129,172)(130,173)(131,174)(132,175)(133,176)(134,177)(135,178)(136,179)(137,180)(138,181)(139,182)(140,183), (1,116)(2,117)(3,118)(4,119)(5,120)(6,121)(7,122)(8,123)(9,124)(10,125)(11,126)(12,127)(13,128)(14,129)(15,130)(16,131)(17,132)(18,133)(19,134)(20,135)(21,136)(22,137)(23,138)(24,139)(25,140)(26,113)(27,114)(28,115)(29,175)(30,176)(31,177)(32,178)(33,179)(34,180)(35,181)(36,182)(37,183)(38,184)(39,185)(40,186)(41,187)(42,188)(43,189)(44,190)(45,191)(46,192)(47,193)(48,194)(49,195)(50,196)(51,169)(52,170)(53,171)(54,172)(55,173)(56,174)(57,96)(58,97)(59,98)(60,99)(61,100)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,109)(71,110)(72,111)(73,112)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,91)(81,92)(82,93)(83,94)(84,95)(141,212)(142,213)(143,214)(144,215)(145,216)(146,217)(147,218)(148,219)(149,220)(150,221)(151,222)(152,223)(153,224)(154,197)(155,198)(156,199)(157,200)(158,201)(159,202)(160,203)(161,204)(162,205)(163,206)(164,207)(165,208)(166,209)(167,210)(168,211), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,90,130,65)(2,64,131,89)(3,88,132,63)(4,62,133,87)(5,86,134,61)(6,60,135,85)(7,112,136,59)(8,58,137,111)(9,110,138,57)(10,84,139,109)(11,108,140,83)(12,82,113,107)(13,106,114,81)(14,80,115,105)(15,104,116,79)(16,78,117,103)(17,102,118,77)(18,76,119,101)(19,100,120,75)(20,74,121,99)(21,98,122,73)(22,72,123,97)(23,96,124,71)(24,70,125,95)(25,94,126,69)(26,68,127,93)(27,92,128,67)(28,66,129,91)(29,143,189,200)(30,199,190,142)(31,141,191,198)(32,197,192,168)(33,167,193,224)(34,223,194,166)(35,165,195,222)(36,221,196,164)(37,163,169,220)(38,219,170,162)(39,161,171,218)(40,217,172,160)(41,159,173,216)(42,215,174,158)(43,157,175,214)(44,213,176,156)(45,155,177,212)(46,211,178,154)(47,153,179,210)(48,209,180,152)(49,151,181,208)(50,207,182,150)(51,149,183,206)(52,205,184,148)(53,147,185,204)(54,203,186,146)(55,145,187,202)(56,201,188,144)>;
G:=Group( (1,187)(2,188)(3,189)(4,190)(5,191)(6,192)(7,193)(8,194)(9,195)(10,196)(11,169)(12,170)(13,171)(14,172)(15,173)(16,174)(17,175)(18,176)(19,177)(20,178)(21,179)(22,180)(23,181)(24,182)(25,183)(26,184)(27,185)(28,186)(29,132)(30,133)(31,134)(32,135)(33,136)(34,137)(35,138)(36,139)(37,140)(38,113)(39,114)(40,115)(41,116)(42,117)(43,118)(44,119)(45,120)(46,121)(47,122)(48,123)(49,124)(50,125)(51,126)(52,127)(53,128)(54,129)(55,130)(56,131)(57,165)(58,166)(59,167)(60,168)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,161)(82,162)(83,163)(84,164)(85,197)(86,198)(87,199)(88,200)(89,201)(90,202)(91,203)(92,204)(93,205)(94,206)(95,207)(96,208)(97,209)(98,210)(99,211)(100,212)(101,213)(102,214)(103,215)(104,216)(105,217)(106,218)(107,219)(108,220)(109,221)(110,222)(111,223)(112,224), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,29)(18,30)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(57,222)(58,223)(59,224)(60,197)(61,198)(62,199)(63,200)(64,201)(65,202)(66,203)(67,204)(68,205)(69,206)(70,207)(71,208)(72,209)(73,210)(74,211)(75,212)(76,213)(77,214)(78,215)(79,216)(80,217)(81,218)(82,219)(83,220)(84,221)(85,168)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155)(101,156)(102,157)(103,158)(104,159)(105,160)(106,161)(107,162)(108,163)(109,164)(110,165)(111,166)(112,167)(113,184)(114,185)(115,186)(116,187)(117,188)(118,189)(119,190)(120,191)(121,192)(122,193)(123,194)(124,195)(125,196)(126,169)(127,170)(128,171)(129,172)(130,173)(131,174)(132,175)(133,176)(134,177)(135,178)(136,179)(137,180)(138,181)(139,182)(140,183), (1,116)(2,117)(3,118)(4,119)(5,120)(6,121)(7,122)(8,123)(9,124)(10,125)(11,126)(12,127)(13,128)(14,129)(15,130)(16,131)(17,132)(18,133)(19,134)(20,135)(21,136)(22,137)(23,138)(24,139)(25,140)(26,113)(27,114)(28,115)(29,175)(30,176)(31,177)(32,178)(33,179)(34,180)(35,181)(36,182)(37,183)(38,184)(39,185)(40,186)(41,187)(42,188)(43,189)(44,190)(45,191)(46,192)(47,193)(48,194)(49,195)(50,196)(51,169)(52,170)(53,171)(54,172)(55,173)(56,174)(57,96)(58,97)(59,98)(60,99)(61,100)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,109)(71,110)(72,111)(73,112)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,91)(81,92)(82,93)(83,94)(84,95)(141,212)(142,213)(143,214)(144,215)(145,216)(146,217)(147,218)(148,219)(149,220)(150,221)(151,222)(152,223)(153,224)(154,197)(155,198)(156,199)(157,200)(158,201)(159,202)(160,203)(161,204)(162,205)(163,206)(164,207)(165,208)(166,209)(167,210)(168,211), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,90,130,65)(2,64,131,89)(3,88,132,63)(4,62,133,87)(5,86,134,61)(6,60,135,85)(7,112,136,59)(8,58,137,111)(9,110,138,57)(10,84,139,109)(11,108,140,83)(12,82,113,107)(13,106,114,81)(14,80,115,105)(15,104,116,79)(16,78,117,103)(17,102,118,77)(18,76,119,101)(19,100,120,75)(20,74,121,99)(21,98,122,73)(22,72,123,97)(23,96,124,71)(24,70,125,95)(25,94,126,69)(26,68,127,93)(27,92,128,67)(28,66,129,91)(29,143,189,200)(30,199,190,142)(31,141,191,198)(32,197,192,168)(33,167,193,224)(34,223,194,166)(35,165,195,222)(36,221,196,164)(37,163,169,220)(38,219,170,162)(39,161,171,218)(40,217,172,160)(41,159,173,216)(42,215,174,158)(43,157,175,214)(44,213,176,156)(45,155,177,212)(46,211,178,154)(47,153,179,210)(48,209,180,152)(49,151,181,208)(50,207,182,150)(51,149,183,206)(52,205,184,148)(53,147,185,204)(54,203,186,146)(55,145,187,202)(56,201,188,144) );
G=PermutationGroup([[(1,187),(2,188),(3,189),(4,190),(5,191),(6,192),(7,193),(8,194),(9,195),(10,196),(11,169),(12,170),(13,171),(14,172),(15,173),(16,174),(17,175),(18,176),(19,177),(20,178),(21,179),(22,180),(23,181),(24,182),(25,183),(26,184),(27,185),(28,186),(29,132),(30,133),(31,134),(32,135),(33,136),(34,137),(35,138),(36,139),(37,140),(38,113),(39,114),(40,115),(41,116),(42,117),(43,118),(44,119),(45,120),(46,121),(47,122),(48,123),(49,124),(50,125),(51,126),(52,127),(53,128),(54,129),(55,130),(56,131),(57,165),(58,166),(59,167),(60,168),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160),(81,161),(82,162),(83,163),(84,164),(85,197),(86,198),(87,199),(88,200),(89,201),(90,202),(91,203),(92,204),(93,205),(94,206),(95,207),(96,208),(97,209),(98,210),(99,211),(100,212),(101,213),(102,214),(103,215),(104,216),(105,217),(106,218),(107,219),(108,220),(109,221),(110,222),(111,223),(112,224)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,29),(18,30),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36),(25,37),(26,38),(27,39),(28,40),(57,222),(58,223),(59,224),(60,197),(61,198),(62,199),(63,200),(64,201),(65,202),(66,203),(67,204),(68,205),(69,206),(70,207),(71,208),(72,209),(73,210),(74,211),(75,212),(76,213),(77,214),(78,215),(79,216),(80,217),(81,218),(82,219),(83,220),(84,221),(85,168),(86,141),(87,142),(88,143),(89,144),(90,145),(91,146),(92,147),(93,148),(94,149),(95,150),(96,151),(97,152),(98,153),(99,154),(100,155),(101,156),(102,157),(103,158),(104,159),(105,160),(106,161),(107,162),(108,163),(109,164),(110,165),(111,166),(112,167),(113,184),(114,185),(115,186),(116,187),(117,188),(118,189),(119,190),(120,191),(121,192),(122,193),(123,194),(124,195),(125,196),(126,169),(127,170),(128,171),(129,172),(130,173),(131,174),(132,175),(133,176),(134,177),(135,178),(136,179),(137,180),(138,181),(139,182),(140,183)], [(1,116),(2,117),(3,118),(4,119),(5,120),(6,121),(7,122),(8,123),(9,124),(10,125),(11,126),(12,127),(13,128),(14,129),(15,130),(16,131),(17,132),(18,133),(19,134),(20,135),(21,136),(22,137),(23,138),(24,139),(25,140),(26,113),(27,114),(28,115),(29,175),(30,176),(31,177),(32,178),(33,179),(34,180),(35,181),(36,182),(37,183),(38,184),(39,185),(40,186),(41,187),(42,188),(43,189),(44,190),(45,191),(46,192),(47,193),(48,194),(49,195),(50,196),(51,169),(52,170),(53,171),(54,172),(55,173),(56,174),(57,96),(58,97),(59,98),(60,99),(61,100),(62,101),(63,102),(64,103),(65,104),(66,105),(67,106),(68,107),(69,108),(70,109),(71,110),(72,111),(73,112),(74,85),(75,86),(76,87),(77,88),(78,89),(79,90),(80,91),(81,92),(82,93),(83,94),(84,95),(141,212),(142,213),(143,214),(144,215),(145,216),(146,217),(147,218),(148,219),(149,220),(150,221),(151,222),(152,223),(153,224),(154,197),(155,198),(156,199),(157,200),(158,201),(159,202),(160,203),(161,204),(162,205),(163,206),(164,207),(165,208),(166,209),(167,210),(168,211)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,90,130,65),(2,64,131,89),(3,88,132,63),(4,62,133,87),(5,86,134,61),(6,60,135,85),(7,112,136,59),(8,58,137,111),(9,110,138,57),(10,84,139,109),(11,108,140,83),(12,82,113,107),(13,106,114,81),(14,80,115,105),(15,104,116,79),(16,78,117,103),(17,102,118,77),(18,76,119,101),(19,100,120,75),(20,74,121,99),(21,98,122,73),(22,72,123,97),(23,96,124,71),(24,70,125,95),(25,94,126,69),(26,68,127,93),(27,92,128,67),(28,66,129,91),(29,143,189,200),(30,199,190,142),(31,141,191,198),(32,197,192,168),(33,167,193,224),(34,223,194,166),(35,165,195,222),(36,221,196,164),(37,163,169,220),(38,219,170,162),(39,161,171,218),(40,217,172,160),(41,159,173,216),(42,215,174,158),(43,157,175,214),(44,213,176,156),(45,155,177,212),(46,211,178,154),(47,153,179,210),(48,209,180,152),(49,151,181,208),(50,207,182,150),(51,149,183,206),(52,205,184,148),(53,147,185,204),(54,203,186,146),(55,145,187,202),(56,201,188,144)]])
124 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4H | 4I | ··· | 4N | 7A | 7B | 7C | 14A | ··· | 14AS | 28A | ··· | 28AV |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 28 | 28 | 2 | ··· | 2 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
124 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | C4○D28 |
kernel | C2×C23.23D14 | C2×Dic7⋊C4 | C2×D14⋊C4 | C23.23D14 | C2×C23.D7 | C22×C7⋊D4 | C23×C28 | C22×C14 | C23×C4 | C2×C14 | C22×C4 | C24 | C23 | C22 |
# reps | 1 | 2 | 2 | 8 | 1 | 1 | 1 | 4 | 3 | 8 | 18 | 3 | 24 | 48 |
Matrix representation of C2×C23.23D14 ►in GL5(𝔽29)
28 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 7 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 13 | 14 |
1 | 0 | 0 | 0 | 0 |
0 | 18 | 8 | 0 | 0 |
0 | 21 | 11 | 0 | 0 |
0 | 0 | 0 | 4 | 26 |
0 | 0 | 0 | 25 | 25 |
G:=sub<GL(5,GF(29))| [28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,7,0,0,0,0,1],[1,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28],[1,0,0,0,0,0,0,28,0,0,0,28,0,0,0,0,0,0,2,13,0,0,0,0,14],[1,0,0,0,0,0,18,21,0,0,0,8,11,0,0,0,0,0,4,25,0,0,0,26,25] >;
C2×C23.23D14 in GAP, Magma, Sage, TeX
C_2\times C_2^3._{23}D_{14}
% in TeX
G:=Group("C2xC2^3.23D14");
// GroupNames label
G:=SmallGroup(448,1242);
// by ID
G=gap.SmallGroup(448,1242);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,675,136,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=d,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^13>;
// generators/relations